Delay in Feedback Repression by Cryptochrome 1 Is Required for Circadian Clock Function

نویسندگان

  • Maki Ukai-Tadenuma
  • Rikuhiro G. Yamada
  • Haiyan Xu
  • Jürgen A. Ripperger
  • Andrew C. Liu
  • Hiroki R. Ueda
چکیده

Direct evidence for the requirement of delay in feedback repression in the mammalian circadian clock has been elusive. Cryptochrome 1 (Cry1), an essential clock component, displays evening-time expression and serves as a strong repressor at morning-time elements (E box/E' box). In this study, we reveal that a combination of day-time elements (D box) within the Cry1-proximal promoter and night-time elements (RREs) within its intronic enhancer gives rise to evening-time expression. A synthetic composite promoter produced evening-time expression, which was further recapitulated by a simple phase-vector model. Of note, coordination of day-time with night-time elements can modulate the extent of phase delay. A genetic complementation assay in Cry1(-/-):Cry2(-/-) cells revealed that substantial delay of Cry1 expression is required to restore circadian rhythmicity, and its prolonged delay slows circadian oscillation. Taken together, our data suggest that phase delay in Cry1 transcription is required for mammalian clock function.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of a novel cryptochrome differentiating domain required for feedback repression in circadian clock function.

Circadian clocks in mammals are based on a negative feedback loop in which transcriptional repression by the cryptochromes, CRY1 and CRY2, lies at the heart of the mechanism. Despite similarities in sequence, domain structure, and biochemical activity, they play distinct roles in clock function. However, detailed biochemical studies have not been straightforward and Cry function has not been ex...

متن کامل

Distinct Roles of HDAC3 in the Core Circadian Negative Feedback Loop Are Critical for Clock Function.

In the core mammalian circadian negative feedback loop, the BMAL1-CLOCK complex activates the transcription of the genes Period (Per) and Cryptochrome (Cry). To close the negative feedback loop, the PER-CRY complex interacts with the BMAL1-CLOCK complex to repress its activity. These two processes are separated temporally to ensure clock function. Here, we show that histone deacetylase 3 (HDAC3...

متن کامل

Genetics and neurobiology of circadian clocks in mammals.

In animals, circadian behavior can be analyzed as an integrated system, beginning with genes and leading ultimately to behavioral outputs. In the last decade, the molecular mechanism of circadian clocks has been unraveled primarily by the use of phenotype-driven (forward) genetic analysis in a number of model systems. Circadian oscillations are generated by a set of genes forming a transcriptio...

متن کامل

Cycling of CRYPTOCHROME Proteins Is Not Necessary for Circadian-Clock Function in Mammalian Fibroblasts

BACKGROUND An interlocked transcriptional-translational feedback loop (TTFL) is thought to generate the mammalian circadian clockwork in both the central pacemaker residing in the hypothalamic suprachiasmatic nuclei and in peripheral tissues. The core circadian genes, including Period1 and Period2 (Per1 and Per2), Cryptochrome1 and Cryptochrome2 (Cry1 and Cry2), Bmal1, and Clock are indispensab...

متن کامل

The BMAL1 C terminus regulates the circadian transcription feedback loop.

The circadian clock is driven by cell-autonomous transcription/translation feedback loops. The BMAL1 transcription factor is an indispensable component of the positive arm of this molecular oscillator in mammals. Here, we present a molecular genetic screening assay for mutant circadian clock proteins that is based on real-time circadian rhythm monitoring in cultured fibroblasts. By using this a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 144  شماره 

صفحات  -

تاریخ انتشار 2011